Chloroplast heteroplasmicity is stabilized by an amber-suppressor tryptophan tRNA(CUA).

نویسندگان

  • W Yu
  • R J Spreitzer
چکیده

Photosynthesis-deficient mutants of the green alga Chlamydomonas reinhardtii were previously shown to arise from nonsense mutations within the chloroplast rbcL gene, which encodes the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39). Photosynthesis-competent revertants of these nonsense mutants have often been found to be stably heteroplasmic, giving rise to both mutant and revertant cells during mitotic or meiotic divisions under nonselective growth conditions. It was proposed that the stable heteroplasmicity might arise from a balanced polymorphism of suppressor and wild-type alleles of a tRNA gene maintained within the polyploid chloroplast genome. In the present study, we have focused on determining the molecular basis for the heteroplasmicity of one such revertant, named R13-3C, which was recovered from the 18-7G amber (UAG) mutant. Restriction-enzyme analysis and DNA sequencing showed that the amber mutation is still present in the rbcL gene of the revertant strain. In contrast, DNA sequencing of the suspected tRNA(Trp) gene of the revertant revealed a mutation that would change its CCA anticodon to amber-specific CUA. This mutation was found to be heteroplasmic, being present in only 70% of the tRNA(Trp) gene copies. Under nonselective conditions, the suppressor mutation was lost from cells that also lost the revertant phenotype. We conclude that stable heteroplasmicity can arise as a balanced polymorphism of organellar alleles. This observation suggests that additional tRNA suppressors may be identified due to their heteroplasmic nature within polyploid genomes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design of a bacterial host for site-specific incorporation of p-bromophenylalanine into recombinant proteins.

Introduction of a yeast suppressor tRNA (ytRNA(Phe)(CUA)) and a mutant yeast phenylalanyl-tRNA synthetase (yPheRS (T415G)) into an Escherichia coli expression host allows in vivo incorporation of phenylalanine analogues into recombinant proteins in response to amber stop codons. However, high-fidelity incorporation of non-natural amino acids is precluded in this system by mischarging of ytRNA(P...

متن کامل

Transfer ribonucleic acid-mediated suppression of termination codons in Escherichia coli.

The universal genetic code includes three codons which signal polypeptide chain termination. These termination or nonsense codons are UAG (amber), UAA (ochre), and UGA (opal). Usually, Escherichia coli and other procaryotic cells do not contain transfer ribonucleic acids (tRNAs) which recognize these codons. However, such tRNAs can be created by suppressor mutations in tRNA genes, generating tR...

متن کامل

A general approach for the generation of orthogonal tRNAs.

BACKGROUND The addition of new amino acids to the genetic code of Escherichia coli requires an orthogonal suppressor tRNA that is uniquely acylated with a desired unnatural amino acid by an orthogonal aminoacyl-tRNA synthetase. A tRNA(Tyr)(CUA)-tyrosyl-tRNA synthetase pair imported from Methanococcus jannaschii can be used to generate such a pair. In vivo selections have been developed for sele...

متن کامل

Switching tRNA(Gln) identity from glutamine to tryptophan.

The middle base (U35) of the anticodon of tRNA(Gln) is a major element ensuring the accuracy of aminoacylation by Escherichia coli glutaminyl-tRNA synthetase (GlnRS). An opal suppressor of tRNA(Gln) (su+2UGA) containing C35 (anticodon UCA) was isolated by genetic selection and mutagenesis. Suppression of a UGA mutation in the E. coli fol gene followed by N-terminal sequence analysis of purified...

متن کامل

In vitro suppression of an amber mutation by a chemically aminoacylated transfer RNA prepared by runoff transcription

An amber suppressor tRNA was prepared in vitro by runoff transcription with T7 RNA polymerase. Both full-length tRNA and truncated tRNA lacking the 3' terminal pCpA from the acceptor stem could be synthesized from the same DNA template. Truncated runoff suppressor tRNA could be enzymatically ligated to phenylalanyl-pCpA to generate aminoacylated full-length suppressor tRNA (Phe-tRNA(CUA)). Phe-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 89 9  شماره 

صفحات  -

تاریخ انتشار 1992